2. Rechenregeln für den Logarithmus

Beispiel 1:

1) $\log_2 4 = \log_2(2^2) = 2$; 2) $\log_2 8 = \log_2(2^3) = 3$;

3) $\log_2(4 \cdot 8) = \log_2(2^2 \cdot 2^3) = \log_2(2^{2+3}) = 2+3$.

Aus 1), 2) und 3) erhält man: $\log_2(4 \cdot 8) = \log_2 4 + \log_2 8$.

Das Ergebnis dieses Beispiels läßt sich verallgemeinern zu

Satz 160.1: Der Logarithmus eines Produkts ist gleich der Summe aus den Logarithmen der Faktoren.

Für u > 0, v > 0, b > 0 und $b \neq 1$ gilt also:

$$\log_b(u \cdot v) = \log_b u + \log_b v$$

Beweis: Mit $x := \log_b u$ und $y := \log_b v$ gilt $b^x = u$ und $b^y = v$.

Also ist $u \cdot v = b^x \cdot b^y = b^{x+y}$ und damit

$$\log_b(u \cdot v) = \log_b(b^{x+y}) = x + y, \quad \text{d.h.} \quad \log_b(u \cdot v) = \log_b u + \log_b v.$$

Satz 160.1 gilt natürlich auch für Produkte mit mehr als zwei Faktoren; z. B. ist

$$\log_b(u \cdot v \cdot w) = \log_b(u \cdot (v \cdot w)) =$$

$$= \log_b u + \log_b(v \cdot w) =$$

$$= \log_b u + \log_b v + \log_b w.$$

Ganz analog zu Satz 160.1 läßt sich auch eine Rechenregel für den Logarithmus eines Quotienten aufstellen:

Satz 160.2: Der Logarithmus eines Quotienten ist gleich der Differenz aus den Logarithmen von Dividend und Divisor.

Für u > 0, v > 0, b > 0 und $b \neq 1$ gilt also:

$$\log_b\left(\frac{u}{v}\right) = \log_b u - \log_b v$$

Den Beweis kannst du leicht selbst durchführen (Aufgabe 161/1).

Bemerkung: In den Formeln von Satz 160.1 und 160.2 ist die linke Seite auch noch definiert, wenn u und v beide negativ sind, die rechte dagegen nicht mehr. Die folgende Form dieser Formeln erfaßt jedoch auch diesen Fall:

$$\log_b(u \cdot v) = \log_b|u| + \log_b|v| \quad \text{bzw.} \quad \log_b\left(\frac{u}{v}\right) = \log_b|u| - \log_b|v|.$$

Beispiel 2:

1) $\log_2 9 = \log_2(3^2) = 2$:

2) $\log_3(9^5) = \log_3\lceil (3^2)^5 \rceil = \log_3(3^{2 \cdot 5}) = 2 \cdot 5 = 5 \cdot 2$

Aus 1) und 2) erhält man: $\log_3(9^5) = 5 \cdot \log_3 9$.

Auch dieses Ergebnis läßt sich verallgemeinern zu

Satz 161.1: Der Logarithmus einer Potenz ist gleich dem Produkt aus dem Exponenten und dem Logarithmus der Basis. Für u > 0, b > 0, $b \neq 1$ und $\varrho \in \mathbb{R}$ gilt also:

$$\log_b u^\varrho = \varrho \cdot \log_b u$$

Beweis: Mit $x := \log_b u$ gilt $b^x = u$ und damit $u^\varrho = (b^x)^\varrho = b^{\varrho x}$. Daher ist $\log_b u^{\varrho} = \log_b (b^{\varrho x}) = \varrho \cdot x$, also $\log_b u^{\varrho} = \varrho \cdot \log_b u$.

4. Fasse zu einem einzigen Logarithmus zusammen:

a) $\log_a 2 + \log_a 3$ **b)** $\log_a 5 - \log_a 7$ **c)** $\log_a 1 - \log_a 11 + \log_a 2$

d) $2\log_{1}16 - \log_{1}8$ **e)** $3\log_{1}2 + \log_{1}4$ **f)** $\log_{1}\sqrt[5]{243} - \log_{1}6 + \log_{1}2$

5. Alle Variablen vertreten positive Zahlen. Vereinfache:

a) $\log_a u^3$ **b)** $\log_a 2c^4$ **c)** $\log_a \left(\frac{3}{vw}\right)^3$ **d)** $\log_a \left(\frac{u^2v}{(2w)^3}\right)$

e) $\log_a \sqrt[4]{u}$ f) $\log_a \sqrt[6]{\frac{u^5}{v}}$ g) $\log_a \left(\frac{1}{\sqrt[3]{r^2 \, \text{s.t.}}}\right)$ h) $\log_a \left(\sqrt[3]{p} \cdot \sqrt[4]{2q}\right)^2$

6. Sind die folgenden Terme äquivalent?

a) $\log_b x + 2$ und $\log_b (x+2)$

b) $\log_b a^2$ und $(\log_b a)^2$

c) $\log_{h}(a^{2})^{3}$, $(\log_{h}a^{2})^{3}$ und $\lceil (\log_{h}a)^{2} \rceil^{3}$

7. Fasse zusammen:

a) $2\log_a m + 3\log_a n$ **b)** $0.5\log_a p^3 - \log_a \left(\frac{p^2}{1/a}\right)$

c) $2\log_a(c^2\sqrt{cd}) - 4\log_a\left(\frac{c}{d^2}\right)$ d) $\log_a c + 1$

 $e) 2 - \log_a(u^2v)$

f) $\frac{1}{2}(\log_a m^2 n - 3) - \left(0.5 - \log_a \frac{\sqrt{n}}{m}\right)$